Shenzhen Wisdomlong Technology CO.,LTD

 

Work hard and best service for you!

Home
Products
About Us
Factory Tour
Quality Control
Contact Us
Request A Quote
Home ProductsIndustrial Servo Drives

NEW ORIGINAL Yaskawa Servo Amplifier 3.96KW AC servo drives SGDB-44ADS

Superb delivery a great product, perfect communication as well !! A++++

—— Carlos

Great deal. Fast shipping and good service.Recommended !!!!!!!!!

—— Gita

I'm Online Chat Now

NEW ORIGINAL Yaskawa Servo Amplifier 3.96KW AC servo drives SGDB-44ADS

Large Image :  NEW ORIGINAL Yaskawa Servo Amplifier 3.96KW AC servo drives SGDB-44ADS

Product Details:

Place of Origin: Japan
Brand Name: Yasakawa
Model Number: SGDB-44ADS

Payment & Shipping Terms:

Minimum Order Quantity: 1
Price: negotiable
Packaging Details: New in original box
Delivery Time: 2-3 work days
Payment Terms: T/T, Western Union
Supply Ability: 100
Detailed Product Description
Brand: Yasakawa Model: SGDB-44ADS
Palce Of Origin: Japan Type: Servopack
Input AMPS: 24 Nput Volatge: 200-230v
Input Frequency: 50/60hz Input PH: 3
High Light:

electric servo drive

,

ac servo drive

NEW ORIGINAL 15KW SERVOPACK Input 200-230v 50/60hz 3Phase SGDB-1EADG​

 

 

 

 

 

SPECIFICATION

SGDB-44ADS
12 month Warranty
Fully functionally tested, cleaned and factory reset (if necessary)
Professionally refurbished
Refurbished items may feature minor cosmetic blemishes and are not supplied with original packaging or accessories.
Supplies are limited and subject to prior sale

 

 

 

 


 

 
 
Similar Products

SGDB-02ADB

SGDB-02ADG

SGDB-03ADB

SGDB-03ADG

SGDB-03ADM

SGDB-05AD

SGDB-05ADG

SGDB-07ADM

SGDB-07ADM +SGMG-06A2BBB

SGDB-10AD

SGDB-10ADG

SGDB-10ADG SGMG-09A2A

SGDB-10ADM

SGDB-10ADM SGDB-15AN

SGDB-10ADS

SGDB-15AD

SGDB-15ADG

SGDB-15ADG-P

SGDB-15ADGY8

SGDB-15ADM

SGDB-15ADP

SGDB-15ADP +SGMG-13A2AB

SGDB-15ADP+SGMP-15A314

SGDB-15ADS

SGDB-15ADSY18

SGDB-15AN

SGDB-15AN-P

SGDB-15VDY104

SGDB-1AAD

SGDB-1AADG

SGDB-1AADG 1

SGDB-1AADGY68

SGDB-1EADG

SGDB-20AD

 
 
 
 
IntroductionThis Section describes the applicability of this User ManualThe E7 Drive is a Pulse Width Modulated Drive for AC induction motors. This type of Drive is also known as an AdjustableFrequency Drive, Variable Frequency Drive, AC Drive, AFD, ASD, VFD, and Inverter. In this manual, the E7 Drive will bereferred to as the "Drive".The E7 Drive is a variable torque AC drive, designed specifically for HVAC applications in building automation, includingfans, blowers and pumps. A new benchmark for size, cost, performance, benefits, and quality, the E7 includes numerousbuilt-in features such as network
communications, H/O/A, PI, and energy-savings functions.®The E7 has embedded communications for the popular building automation protocols, Johnson Controls MetasysandTM®®Siemens APOGEEFLN, as well as Modbus.
 
 
 
 
 
 
There are three different types of ASD's on the market that primarily differ in the type of rectification they use to convert AC to DC and back to AC.
C VVI - Variable Voltage Input
C CSI - Current Source Input
C PWM - Pulse Width Modulated
These drives take the AC input voltage and frequency, covert it to DC using rectifiers, then convert it back to AC in an invertor which changes the voltage and frequency.
Variable Voltage Input (VVI)
The VVI is the oldest AC drive technology and was the first AC drive to gain acceptance in the industrial market.
C The VVI is sometimes called a “six-step drive” due to the shape of the voltage waveform it sends to the motor.
C VVI drives are fairly economical between 25 and 150 horsepower for ranges of speed reduction from 15 to 100% (about 10 to 60 Hertz).
C These drives are also used widely on specialty high speed applications (400 to 3000 Hertz).
Advantages:
good speed range
multiple motor control from one unit
simple control regulator
Disadvantages:
Power Factor decreases with
decreasing speed
Poor ride through ability for low input
voltage
Generates significant output
harmonics
Low Speed Motor Cogging (shaft pulsing/jerky motion)
Requires Isolation Transformer on Input Side
During low speed operation (below 15-20 Hz) cogging can be a problem where the jerky motion of
the motor shaft can create problems for bearings, gears, or gear reducers.
 
 
 
 
where F is in newtons when B is in tesla, I in amperes, and l in metres. This is a delightfully simple formula, and it may come as a surprise to some readers that there are no constants of proportionality involved in
6 Electric Motors and Drives equation 1.2. The simplicity is not a coincidence, but stems from the fact
that the unit of current (the ampere) is actually deWned in terms of force.
 

Strictly, equation 1.2 only applies when the current is perpendicular to the Weld. If this condition is not met, the force on the conductor will be less; and in the extreme case where the current was in the same direction
as the Weld, the force would fall to zero. However, every sensible motor designer knows that to get the best out of the magnetic Weld it has to be perpendicular to the conductors, and so it is safe to assume in
the subsequent discussion that B and I are always perpendicular. In the remainder of this book, it will be assumed that the Xux density and current are mutually perpendicular, and this is why, although B is a
vector quantity (and would usually be denoted by bold type), we can drop the bold notation because the direction is implicit and we are only interested in the magnitude.
 

The reason for the very low force detected in the experiment with the bar magnet is revealed by equation 1.2. To obtain a high force, we must have a high Xux density, and a lot of current. The Xux density at the ends of a bar magnet is low, perhaps 0.1 tesla, so a wire carrying 1 amp will experience a force of only 0.1 N/m (approximately 100 gm wt). Since the Xux density will be conWned to perhaps 1 cm across the end face of the magnet, the total force on the wire will be only 1 gm. This would be barely detectable, and is too low to be of any use in a decent motor. So how is more force obtained?
 

The Wrst step is to obtain the highest possible Xux density. This is achieved by designing a ‘good’ magnetic circuit, and is discussed next. Secondly, as many conductors as possible must be packed in the space
where the magnetic Weld exists, and each conductor must carry as much current as it can without heating up to a dangerous temperature. In this way, impressive forces can be obtained from modestly sized devices, as anyone who has tried to stop an electric drill by grasping the chuck will testify.
 
 
 
 
 

OTHER SUPERIOR PRODUCTS

Yasakawa Motor, Driver SG- Mitsubishi Motor HC-,HA-
Westinghouse Modules 1C-,5X- Emerson VE-,KJ-
Honeywell TC-,TK- GE Modules IC -
Fanuc motor A0- Yokogawa transmitter EJA-
 
 
 

Contact Details
Shenzhen Wisdomlong Technology CO.,LTD

Contact Person: Anna

Tel: 86-13534205279

Send your inquiry directly to us Message not be empty!