Yaskawa Electric SERVOPACK AC Input 3 Phase 200-230V Industrial Servo Drives SGDB-30VDY1
Quick Details
Model Number:SGDE-08AS
Input Voltage:200-230V
Input Frequency:50/60HZ
Input PH : 1
Input AMPS:11.0
Series : Sigma 2 (Σ-II Series)
Output Power : 750W
Output Voltage: 0-230V
Output AMPS: 4.4
Place of Origin:Japan
Efficiency:IE 1
The Yaskawa SGDB Sigma Series Servopacks are Amplifiers for the Sigma Series of AC Servos. Designed for applications requiring multi-drives, the SGDB can be used for speed control, torque control, and position control. A digital operator can be used to set parameters for a Servopack.
Product Family: SGDB-05ADG, SGDB-10ADG, SGDB-15ADG, SGDB-20ADG, SGDB-30ADG, SGDB-44ADG, SGDB-60ADG, SGDB-75ADG, SGDB-1AADG, SGDB-1EADG
Important Notice: Please note that any additional items included with this equipment such as accessories, manuals, cables, calibration data, software, etc. are specifically listed in the above stock item description and/or displayed in the photos of the equipment. Please contact one of our Customer Support Specialists if you have any questions about what is included with this equipment or if you require any additional information.
Similar Products
SGDE01AP 230VAC 1-PH 2.5AMP OUTPUT 100W. 0.87A
SGDE01AS 230VAC 1-PH 2.5AMP 100W. 0.87AMP
SGDE01BP SERVO DRIVE
SGDE01BPY34 SERVO DRIVE
SGDE01VP SERVO DRIVE
SGDE02AP 230VAC 1PH 4AMP OUTPUT 200W 2AMP
SGDE02APA SERVO DRIVE
SGDE02AS 200-230VAC 50/60HZ 1PH 4A
SGDE02BP SERVO DRIVE
SGDE02VP 4.0AMP 1PHASE 50/60HZ 200/230VAC
SGDE03BS SERVO DRIVE
SGDE04AP 200-230VAC 50/60HZ 6A
SGDE04AP 200-230VAC 50/60HZ 6A
SGDE04AS SERVO DRIVE
SGDE08AP SERVO DRIVE
SGDE08APY1 SERVO DRIVE
SGDE08AS SERVO DRIVE
SGDE08VP(R) SERVO DRIVE
SGDE08VPR SERVO DRIVE
SGDE08VS 11AMP 1PHASE 50/60HZ 200/230VAC
SGDEA3AP SERVO DRIVE
SGDEA3VP SERVO DRIVE
SGDEA5AP SERVO DRIVE
SGDEA5BP SERVO DRIVE
SGDEA5BS SERVO DRIVE
SGDEA5VP SERVO DRIVE
The coil itself is shown on the left in Figure 1.6 while the Xux pattern produced is shown on the right. Each turn in the coil produces a Weld pattern, and when all the individual Weld components are superimposed
we see that the Weld inside the coil is substantially increased and that the closed Xux paths closely resemble those of the bar magnet we looked at earlier. The air surrounding the sources of the Weld oVers a homogeneous path for the Xux, so once the tubes of Xux escape from the concentrating inXuence of the source, they are free to spread out into the whole of the surrounding space. Recalling that between each pair of Xux lines there is an equal amount of Xux, we see that because the Xux lines spread out as they leave the conWnes of the coil, the Xux density is much lower outside than inside: for example, if the distance ‘b’ is say four times ‘a’ the Xux density Bb is a quarter of Ba.
Although the Xux density inside the coil is higher than outside, we would Wnd that the Xux densities which we could achieve are still too low to be of use in a motor. What is needed Wrstly is a way of increasing the
Xux density, and secondly a means for concentrating the Xux and preventing it from spreading out into the surrounding space.
Feedforward Control
In order to achieve near zero following or tracking error, feedforward control is often employed. A requirement for feedforward control is the availability of both the velocity, w*(s) and acceleration, a*(s) commands synchronized with the position commands,?q*(s). An example of how feedforward control is used in addition to disturbance rejection control is shown in Fig. 8.
Feedforward control is used to calculate the required torque needed to make the desired move.
The basic equation of motion is given in equation (10).
Tmotor d -TJb = a + w (10)
Since the disturbance torque, Td , is unknown, the estimated motor torque can only be
approximated as shown in equation (11).
ˆ ˆ Estimated Torque s = Ja* * s + wb s (11)
In most cases, the disturbance torque is small enough that estimated torque is very near the required torque. If this is the case, and if the velocity and acceleration commands are available, simple estimates of the total inertia and viscous damping can be used to generate the estimated torque profile in real time without any delay. Continuing with our example, the contributions to the estimated torque by the velocity and acceleration commands are shown in Figs. 9 a) and b) respectively. The composite feedforward signal is shown in Fig. 9 c)
OTHER SUPERIOR PRODUCTS
Yasakawa Motor, Driver SG- |
Mitsubishi Motor HC-,HA- |
Westinghouse Modules 1C-,5X- |
Emerson VE-,KJ- |
Honeywell TC-,TK- |
GE Modules IC - |
Fanuc motor A0- |
Yokogawa transmitter EJA- |