YASKAWA 3000RMP SGMAH Sigma II 200V Japan AC SERVO MOTOR 0.44A SGMAH-A3ABA21J
Specifications
Model SGMAH-A3ABA21J
Product Type AC Servo Motor
Rated Output 30w
Rated Torque0.095 Nm
Rated Speed 3000RPM
Power Supply Voltage 200vAC
Rated Current 0.44Amps
OTHER SUPERIOR PRODUCTS
Yasakawa Motor, Driver SG- Mitsubishi Motor HC-,HA-
Westinghouse Modules 1C-,5X- Emerson VE-,KJ-
Honeywell TC-,TK- Fanuc motor A0-
Rosemount transmitter 3051- Yokogawa transmitter EJA-
Contact person: Anna
E-mail: wisdomlongkeji@163.com
Cellphone: +0086-13534205279
Similar Products
SGMAH-A5A1A21
SGMAH-A5A1A2C
SGMAH-A5A1A2E
SGMAH-A5A1A41D
SGMAH-A5A1A4C
SGMAH-A5A1A-YR11
SGMAH-A5A1A-YR31
SGMAH-A5A1F21
SGMAH-A5A1F2C
SGMAH-A5A1F2CD
SGMAH-A5A1F41
SGMAH-A5A4F41
SGMAH-A5AAA21
SGMAH-A5AAA2B
SGMAH-A5AAA61D
SGMAH-A5AAA61D-OY
SGMAH-A5AAAG161
SGMAH-A5AAAG761
SGMAH-A5AAAG761D
SGMAH-A5AAAH161
This can be accomplished with a "digital filter" and allows filtering out any undesirable cyclical variations that may occur in the first motion device (such as vibrations caused by
resonances, tools, motors, etc.).
By properly designing the software module (S), one can:
• Provide instant "gear changing."
• Provide flexibility on "gear ratio."
• Shift the position relationship by a constant value.
• Decouple undesirable characteristics.
• Cause several axes to follow the master.
• Allow a complex relationship of the slave to the master over one cycle of the master.
The main purpose of this discussion was to provide an understanding of the master/slave concept and the types of features and solutions that it can provide for you. It will help you to
understand your vendor's offerings and to communicate with them.
Your calls and letters are welcome and I will continue to write on those items that you tell me are "hot." And no BULL, either.
Stepper motors can often exhibit a phenomena refered to as resonance at certain step rates. This can be seen as a sudden loss or drop in torque at certain speeds which can result in missed steps or loss of synchronism. It occurs when the input step pulse rate coincides with the natural oscillation frequency of the rotor. Often there is a resonance area around the 100 – 200 pps region and also one in the high step pulse rate region. The resonance phenomena of a stepper motor comes from its basic construction and therefore
it is not possible to eliminate it completely. It is also dependent upon the load conditions. It can be reduced
by driving the motor in half or microstepping modes.
When one step pulse is applied to a stepper motor the rotor behaves in a manner as defined by the above curve.
The step time t is the time it takes the motor shaft to rotate one step angle once the first step pulse is applied.
This step time is highly dependent on the ratio of torque to inertia (load) as well as the type of driver used.
Since the torque is a function of the displacement it follows that the acceleration will also be. Therefore, when moving in large step increments a high torque is developed and consequently a high acceleration. This can cause overshots and ringing as shown. The settling time T is the time it takes these oscillations or ringing to cease. In certain applications this phenomena can be undesirable. It is possible to reduce or eliminate this behaviour by microstepping the stepper motor. For more information on microstepping please consult the microstepping note.